Discrete Exponent Function - DEF (1/14)

The Discrete Exponent Function (**DEF**) used in cryptography firstly was introduced in the cyclic multiplicative group $Z_{p^*} = \{1, 2, 3, ..., p\text{-}1\}$, with binary multiplication operation * **mod** p, where p is prime number. Further the generalizations were made especially in *Elliptic Curve Groups* laying a foundation of *Elliptic Curve CryptoSystems* (ECCS) in general and in *Elliptic Curve Digital Signature Algorithm* (ECDSA) in particular.

Let g be a generator of \mathbb{Z}_p^* then **DEF** is defined in the following way:

$$\operatorname{DEF}_{g}(x) = g^{x} \operatorname{mod} p = a;$$

DEF argument x is associated with the private key - **PrK** (or other secret parameters) and therefore we will label it in red and value a is associated with public key - **PuK** (or other secret parameters) and therefore we will label it in green.

In order to ensure the security of cryptographic protocols, a large prime number p is chosen. This prime number has a length of 2048 bits, which means it is represented in decimal as being on the order of 2^{2048} , or approximately $p \sim 2^{2048}$.

In our modeling with Octave, we will use p of length having only 28 bits for convenience. We will deal also with a strong prime numbers p.

T2. Fermat (little)Theorem. If p is prime, then [Sakalauskas, at al.]

$$z^{p-1} = 1 \mod p$$

Discrete Exponent Function (2/14)

<u>Definition</u>. Binary operation * $\mathbf{mod} p$ in \mathbf{Z}_p^* is an arithmetic multiplication of two integers called operands and taking the result as a residue by dividing by p.

```
For example, let p = 11, then \mathbb{Z}_p^* = \{1, 2, 3, ..., 10\}, then 5 * 8 \mod 11 = 40 \mod 11 = 7, where 7 \in \mathbb{Z}_p^*. In our example the residue of 40 by dividing by 11 is equal to 7, i.e., 40 = 3 * 11 + 7. Then 40 \mod 11 = (33 + 7) \mod 11 = (33 \mod 11 + 7 \mod 11) \mod 11 = (0 + 7) \mod 11 = 7. Notice that 33 \mod 11 = 0 and 7 \mod 11 = 7.
```

<u>Definition</u>: The integer g is a generator in \mathbb{Z}_p^* if powering it by integer exponent values x all obtained numbers that are computed **mod** p generates all elements in in \mathbb{Z}_p^* .

So, it is needed to have at least p-1 exponents x to generate all p-1 elements of \mathbb{Z}_p^* . You will see that exactly p-1 exponents x is enough.

Discrete Exponent Function (3/14)

Let Γ be the set of generators in \mathbb{Z}_p^* . How to find a generator in \mathbb{Z}_p^* ?

In general, it is a hard problem, but using strong prime p and Lagrange theorem in group theory the generator in \mathbb{Z}_p^* can be found by random search satisfying two following conditions if p is strongprime.

For all $g \in \Gamma$

$$g^q \neq 1 \mod p$$
; and $g^2 \neq 1 \mod p$.

<u>Fermat little theorem</u>: If p is prime then for all integers i:

$$i^{p-1} = 1 \mod p$$
.

```
<u>Corollaries</u>: 1. The exponent p-1 is equivalent to the exponent 0, since i^0 = i^{p-1} = 1 \mod p.

2. Any exponent e can be reduced \operatorname{mod}(p-1), i.e. i^e \operatorname{mod} p = i^{e \operatorname{mod}(p-1)} \operatorname{mod} p.
3. All non-equivalent exponents x are in the set Z_{p-1} = \{0, 1, 2, ..., p-2\}; +,-, *mod (p-1) and e mod(p-1) wth exception.

4. Sets Z_{p-1} and Z_p* have the same number of elements.
```

Discrete Exponent Function (4/14)

In \mathbb{Z}_{p-1} addition +, multiplication * and subtraction - operations are realized **mod** (p-1).

Subtraction operation $(h-d) \mod (p-1)$ is replaced by the following addition operation $(h + (-d)) \mod (p-1)$).

Therefore, it is needed to find $-d \mod (p-1)$ such that $d + (-d) = 0 \mod (p-1)$, then assume that

$$-d \mod (p-1) = (p-1-d).$$

Indeed, according to the distributivity property of modular operation

$$(d + (-d)) \bmod (p-1) = (d + (p-1-d) \bmod (p-1) = (p-1) \bmod (p-1) = 0.$$

Then

$$(h-d) \mod (p-1) = (h + (p-1-d)) \mod (p-1)$$

Discrete Exponent Function (5/14)

<u>Statement</u>: If greatest common divider between p-1 and i is equal to 1, i.e., $\gcd(p-1,i)=1$, then there exists unique inverse element $i^{-1} \mod (p-1)$ such that $i*i^{-1} \mod (p-1)=1$. This element can be found by *Extended Euclide algorithm* or using *Fermat little theorem*. We do not fall into details how to find $i^{-1} \mod (p-1)$ since we will use the ready-made computer code instead in our modeling.

To compute $u^{\dagger i} \mod (p-1)$ it is replaced by the following relation $u * i^{-1} \mod (p-1)$ since

$$u / i \mod (p-1) = u * i^{-1} \mod (p-1).$$

```
>> d=8:
                                           >> d=3:
>> d m1=mulinv(d,p-1)
                                           >> d m1=mulinv(d,p-1)
d m1 = Inverse element does not exist
                                           dm1=7
>> gcd(d,p-1)
                                           >> mod(d*d_m1,p-1)
ans = 2
                                           ans = 1
                                           >> d*d m1
>> d=9;
                                           ans = 21
>> gcd(d,p-1)
ans = 1
                                           >> mog(ans,p-1)
                                           error: 'mog' undefined near line 1, column
>> d m1=mulinv(d,p-1)
dm1=9
>> mod(d*d m1,p-1)
                                           >> mod(ans,p-1)
ans = 1
                                           ans = 1
>> 1/9
ans = 0.1111
```

Discrete Exponent Function (6/14)

<u>Example 1</u>: Let for given integers u, x and h in \mathbb{Z}_{p-1} we compute exponent s of generator g by the expression

Then

$$s = u + xh$$
.

$$g^s \mod p = g^{s \mod (p-1)} \mod p$$
.

Therefore, s can be computed $\mathbf{mod}(p-1)$ in advance, to save a multiplication operations, i.e.

$$s = \mathbf{u} + \mathbf{x}h \mod (\mathbf{p}-1).$$

Example 2: Exponent *s* computation including subtraction by $xr \mod (p-1)$ and division by i in \mathbb{Z}_{p-1} when $\gcd(i, p-1) = 1$. $s = (h - xr)i^{-1} \mod (p-1)$.

```
Firstly d = xr \mod (p-1) is computed: 
Secondly -d = -xr \mod (p-1) = (p-1-d) is found. 
Thirdly i^{-1} \mod (p-1) is found. 
And finally exponent s = (h + (p-1-d))i^{-1} \mod (p-1) is computed. 
>> i_m1=mulinv(i,p-1);
```

Discrete Exponent Function (7/14)

Referencing to Fermat little theorem and its corollaries, formulated above, the following theorem can be proved.

<u>Theorem</u>. If g is a generator in \mathbb{Z}_p^* then **DEF** provides the following 1-to-1 mapping

DEF:
$$Z_{p-1} \rightarrow Z_p^*$$
.

Parameters p and g for **DEF** definition we name as Public Parameters and denote by **PP** = (p, g).

Example: Strong prime
$$p = 11$$
, $p = 2 * 5 + 1$, then $q = 5$ and q is prime. Then $p-1 = 10$.

$$Z_{11}^* = \{1, 2, 3, ..., 10\}$$

$$Z_{10} = \{0, 1, 2, ..., 9\}$$

Discrete Exponent Function (8/14)

The results of any binary operation (multiplication, addition, etc.) defined in any finite group is named *Cayley table* including multiplication table, addition table etc.

Multiplication table of multiplicative group Z_{11}^* is represented below.

Multiplicatio n tab. mod 11	Z_{11}^*									
*	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	1	3	5	7	9
3	3	6	9	1	4	7	10	2	5	8
4	4	8	1	5	9	2	6	10	3	7
5	5	10	4	9	3	8	2	7	1	6
6	6	1	7	2	8	3	9	4	10	5
7	7	3	10	6	2	9	5	1	8	4
8	8	5	2	10	7	4	1	9	6	3
9	9	7	5	3	1	10	8	6	4	2
10	10	9	8	7	6	5	4	3	2	1

Values of inverse elements in Z_{11}^*

$1^{-1} = 1 \mod 11$
$2^{-1} = 6 \mod 11$
$3^{-1} = 4 \mod 11$
$4^{-1} = 3 \mod 11$
$5^{-1} = 9 \mod 11$
6 ⁻¹ = 2 mod 11
$7^{-1} = 8 \mod 11$
$8^{-1} = 7 \mod 11$
$9^{-1} = 5 \mod 11$
10 ⁻¹ = 10 mod 11

Discrete Exponent Function (9/14)

The table of exponent values for p = 11 in Z_{11}^* computed **mod** 11 and is presented in table below. Notice that according to Fermat little theorem for all $z \in Z_{11}^*$, $z^{p-1} = z^{10} = z^0 = 1$ **mod** 11.

Exponent tab. mod	Z_{11}^*										
^	0	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1	1	1
2	1	2	4	8	5	10	9	7	3	6	1
3	1	3	9	5	4	1	3	9	5	4	1
4	1	4	5	9	3	1	4	5	9	3	1
5	1	5	3	4	9	1	5	3	4	9	1
6	1	6	3	7	9	10	5	8	4	2	1
7	1	7	5	2	3	10	4	6	9	8	1
8	1	8	9	6	4	10	3	2	5	7	1
9	1	9	4	3	5	1	9	4	3	5	1
10	1	10	1	10	1	10	1	10	1	10	1

$2^2 \neq 1 \mod 11 \& 2^5 \neq 1 \mod$	11
$6^2 \neq 1 \mod 11 \& 6^5 \neq 1 \mod 1$	11
$7^2 \neq 1 \mod 11 \& 7^5 \neq 1 \mod 11 \& 7^5 \neq 1 \mod 11 \& 7^5 \neq 1 \mod 11 $	11
$7^2 \neq 1 \mod 11 \& 7^5 \neq 1 \mod$	

Discrete Exponent Function (10/14)

Notice that there are elements satisfying the following different relations, for example:

$$3^5 = 1 \mod 11$$
 and $3^2 \neq 1 \mod 11$.

The set of such elements forms a subgroup of prime order q = 5 if we add to these elements the *neutral* group element 1.

This subgroup has a great importance in cryptography we denote by

$$G_5 = \{1, 3, 4, 5, 9\}.$$

The multiplication table of G_5 elements extracted from multiplication table of \mathbf{Z}_{11}^* is presented below.

Multiplication tab. mod 11	G5				
*	1	3	4	5	9
1	1	3	4	5	9
3	3	9	1	4	5
4	4	1	5	9	3
5	5	4	9	3	1
9	9	5	3	1	4

Values of inverse elements in G₅

1-1= 1	mod 11
$3^{-1}=4$	mod 11
$4^{-1}=3$	mod 11
5 ⁻¹ = 9	mod 11
$9^{-1}=5$	mod 11

Exponent tab. mod 11	G5					
۸	0	1	2	3	4	5
1	1	1	1	1	1	1
3	1	3	9	5	4	1
4	1	4	5	9	3	1
5	1	5	3	4	9	1
9	1	9	4	3	5	1

Discrete Exponent Function (11/14)

Notice that since G_5 is a subgroup of Z_{11}^* the multiplication operations in it are performed **mod** 11. The exponent table shows that all elements $\{3, 4, 5, 9\}$ are the generators in G_5 .

Notice also that for all $\gamma \in \{3, 4, 5, 9\}$ their exponents 0 and 5 yields the same result, i.e.

$$\gamma^0 = \gamma^5 = 1 \mod 11$$
.

This means that exponents of generators γ are computed **mod** 5.

This property makes the usage of modular groups of prime order q valuable in cryptography since they provide a higher-level security based on the stronger assumptions we will mention later.

Therefore, in many cases instead the group \mathbb{Z}_p^* defined by the prime (not necessarily strong prime) number p the subgroup of prime order \mathbb{G}_q in \mathbb{Z}_p^* is used.

In this case if p is strong prime, then generator γ in G_q can be found by random search satisfying the following conditions

$$\gamma^q = 1 \mod p$$
 and $\gamma^2 \neq 1 \mod p$.

Analogously in this generalized case this means that exponents of generators γ are computed **mod** q. In our modeling we will use group \mathbb{Z}_p^* instead of G_q for simplicity.

Discrete Exponent Function (12/14)

Let as above p=11 and is strong prime and generator we choose g=7 from the set $\Gamma=\{2, 6, 7, 8\}$. Public Parameters are $\mathbf{PP}=(11,7)$, Then $\mathbf{DEF}_g(x) = \mathbf{DEF}_7(x)$ is defined in the following way:

$$DEF_7(x) = 7^x \mod 11 = a$$
;

DEF₇(x) provides the following 1-to-1 mapping, displayed in the table below.

x	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$7^x \mod p = a$	1	7	5	2	3	10	4	6	9	8	1	7	5	2	3

You can see that a values are repeating when x = 10, 11, 12, 13, 14, etc. since exponents are reduced **mod** 10 due to *Fermat little theorem*.

The illustration why $7^x \mod p$ values are repeating when x = 10, 11, 12, 13, 14, etc. is presented in computations below:

Discrete Exponent Function (13/14)

For illustration of 1-to-1 mapping of $\mathbf{DEF}_7(\mathbf{x})$ we perform the following step-by-step computations.

	$x \in Z_{10}$	$a \in Z_{11}$
$7^0 = 1 \text{ mod } 11$	0	1
$7^1 = 7 \text{ mod } 11$	1	2
$7^2 = 5 \text{ mod } 11$	2	3
$7^3 = 2 \text{ mod } 11$	3	4
$7^4 = 3 \text{ mod } 11$	4	5
$7^5 = 10 \text{ mod } 11$	5	6
$7^6 = 4 \text{ mod } 11$	6	7
$7^7 = 6 \text{ mod } 11$	7	8
$7^8 = 9 \text{ mod } 11$	8	9
$7^9 = 8 \text{ mod } 11$	9	10

It is seen that one value of x is mapped to one value of a.

Discrete Exponent Function (14/14)

But the most in interesting think is that **DEF** is behaving like a *pseudorandom function*.

It is a main reason why this function is used in cryptography - classical cryptography.

To better understand the pseudorandom behaviour of **DEF** we compare the graph of "regular" **sine** function with "pseudorandom" **DEF** using Octave software.

>> p128sin

<u>Example 1</u>: Let for given integers u, x and h in Z_{p-1} we compute exponent s of generator g by the expression

Then

s = u + xh.

 $g^s \mod p = g^{s \mod (p-1)} \mod p$.

Therefore, s can be computed **mod** (p-1) in advance, to save a multiplication operations, i.e.

 $s = \mathbf{u} + \mathbf{x}\mathbf{h} \mod (\mathbf{p}-1)$.

```
>> p=genstrongprime(28)
                                    >> u=int64(randi(p-1))
                                                                   >> snr=int64(u+x*h)
p = 242502683
                                    u = 74661797
                                                                   snr = 32175149681928845
>> q=(p-1)/2
                                    >> h=int64(randi(p-1))
                                                                   >> mod(snr,p-1)
q = 121251341
                                    h = 194373549
                                                                   ans = 50343561
>> g=2
                                    >> xh=mod(x*h,p-1)
g = 2
                                    xh = 218184446
>> mod exp(g,q,p)
                                    >> upxh=mod(u+xh,p-1)
ans = 242502682
                                    upxh = 50343561
>> x=randi(p-1)
                                    >> s=upxh
                                    s = 50343561
x = 4.8906e + 07
>> x=int64(randi(p-1))
x = 165532552
```

<u>Example 2</u>: Exponent s computation including subtraction by $xr \mod (p-1)$ and division by i in \mathbb{Z}_{p-1} when $\gcd(i, p-1) = 1$. $s = (h - xr)i^{-1} \mod (p-1).$

Firstly $d = xr \mod (p-1)$ is computed:

Secondly $-d = -xr \mod (p-1) = (p-1-d)$ is found.

Thirdly $i^{-1} \mod (p-1)$ is found.

And finally exponent $s = (h + (p-1-d))i^{-1} \mod (p-1)$ is computed.

```
>> r=int64(randi(p-1))
                                >> i m1=mulinv(i,p-1)
r = 212560238
                                i_m1 = 196196855
>> i=int64(randi(p-1))
                                >> gcd(i,i_m1)
i = 64538497
                                ans = 1
>> xr=mod(x*r,p-1)
                                >> mod(i*i_m1,p-1)
xr = 98263592
                                ans = 1
>> mxr=mod(-xr,p-1)
                                >> s=mod(hpmxr*i m1,p-1)
mxr = 144239090
                                s = 131208547
>> xrpmr=mod(xr+mxr,p-1)
xrpmr = 0
>> hpmxr=mod(h+mxr,p-1)
hpmxr = 96109957
```

$$s = (h - xr)i^{-1} \mod (p-1).$$

 $g^{5} \mod p = \dots$

Firstly $d = xr \mod (p-1)$ is computed:

Secondly $-d = -xr \mod (p-1) = (p-1-d)$ is found.

Thirdly $i^{-1} \mod (p-1)$ is found.

And finally exponent $s = (h + (p-1-d))i^{-1} \mod (p-1)$ is computed.

Diffie-Hellman Key Agreement Protocol (DH KAP) Public Parameters PP=(p,g)

Security considerations; if someone can compute for example a secret param. U generated by A the helshe can compute secret key k by intercepting t_B Adv.: $(t_B)^U$ mod p = k.

If p is generated large enough, e.g. $p \sim 2^{2048} \approx 10^{400}$, |p| = 2042 bits the to find u when p, g and t_A are given is infeasible with classical computers.

It is if easible to compute u from the equation g'' mod $p=t_{\star}$ by having P, g and t_{\star} .

The problem to find u when p, g and t_A are given is called a discret logarithm problem -DLP $dlog_g(g)^u$ mod $p = u \cdot dlog_g(g)$ mod $p = u \cdot 1$ mod p = u.