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Discrete Exponent Function - DEF (1/14)

The Discrete Exponent Function (DEF) used in cryptography firstly was introduced in the cyclic
multiplicative group Zp== {1, 2, 3, ..., p-1}, with binary multiplication operation * mod p, where p is prime
number. Further the generalizations were made especially in Elliptic Curve Groups laying a foundation of
Elliptic Curve CryptoSystems (ECCS) in general and in Elliptic Curve Digital Signature Algorithm
(ECDSA) in particular.

Let g be a generator of Z,"then DEF is defined in the following way:

DEF4(X) = g*mod p = a;
DEF argument x is associated with the private key — PrK (or other secret parameters) and therefore we will
label it in red and value a is associated with public key — PuK (or other secret parameters) and therefore we
will label it in green.
In order to ensure the security of cryptographic protocols, a large prime number p is chosen. This prime
number has a length of 2048 bits, which means it is represented in decimal as being on the order of 22048, or
approximately p ~ 22048,

In our modeling with Octave, we will use p of length having only 28 bits for convenience. We will deal also
with a strong prime numbers p.

T2. Fermat (little)Theorem. If p is prime, then [Sakalauskas, at al.]

zP1=1modp

Discrete Exponent Function (2/14)

Definition. Binary operation * mod p in Zy" is an arithmetic multiplication of two integers called operands
and taking the result as a residue by dividing by p.

For example, let p = 11, then Z,*= {1, 2, 3, ..., 10}, then 5 * 8 mod 11 =40 mod 11 = 7, where 7 € Z,".

In our example the residue of 40 by dividing by 11 isequalto 7,i.e.,40=3* 11 +7.
Then 40 mod 11 = (33 +7) mod 11 = (33 mod 11 + 7 mod 11) mod 11 = (0 + 7) mod 11 = 7.
Notice that 33 mod 11 =0and 7 mod 11 =7.

Definition: The integer g is a generator in Zp" if powering it by integer exponent values x all obtained
numbers that are computed mod p generates all elements in in Z,".

So, it is needed to have at least p-1 exponents x to generate all p-1 elements of Z,". You will see that exactly
p-1 exponents X is enough.

Discrete Exponent Function (3/14)

Let I" be the set of generators in Z,*. How to find a generator in Z,"?

In general, it is a hard problem, but using strong prime p and Lagrange theorem in group theory the generator
in Zp" can be found by random search satisfying two following conditions if p is strongprime.

Forall gel’
g9 1 mod p; and g2 1 mod p.

Fermat little theorem: If p is prime then for all integers i:

i =1 mod p.

"111_003_DEF Page 1



Corollaries: 1. The exponent p-1 is equivalent to the exponent 0, since i°= i1 =1 mod p.
2. Any exponent e can be reduced mod (p-1), i.e.
iemod p = ie med () mod p.
3. All non-equivalent exponents x are in the set Zp.1 = {0, 1, 2, ..., p-2}; +,-, *mod (p-1)
and / mod(p-1) wth exception.
4. Sets Zp-1 and Zp" have the same number of elements.

Discrete Exponent Function (4/14)

In Zp.1 addition +, multiplication * and subtraction - operations are realized mod (p-1).
Subtraction operation (h-d) mod (p-1) is replaced by the following addition operation (h + (-d)) mod (p-1)).

Therefore, it is needed to find -d mod (p-1) such that d + (-d) = 0 mod (p-1), then assume that

-d mod (p-1) = (p-1-d).
Indeed, according to the distributivity property of modular operation
(d + (-d)) mod (p-1) = (d + (p-1-d) mod (p-1) = (p-1) mod (p-1) = 0.

Then
(h-d) mod (p-1) = (h + (p-1-d)) mod (p-1)
>> p=11 >> mod(d+md,p-1)
p=11 ans=0
>> d=8; >>d+md
>> md=p-1-d ans =10
md =2

Discrete Exponent Function (5/14)

Statement: If greatest common divider between p-1 and i is equal to 1, i.e., gcd(p-1, i) = 1, then there exists
unique inverse element it mod (p-1) such that i * it mod (p-1) = 1. This element can be found by Extended
Euclide algorithm or using Fermat little theorem. We do not fall into details how to find i-* mod (p-1) since
we will use the ready-made computer code instead in our modeling.

Division operation / mod (p-1) of any element in Z,.1 by some element i is replaced by multiplication
operation with it mod (p-1) if gcd(i, p-1) = 1 according to the Statement above.

To compute u/i mod (p-1) it is replaced by the following relation u * it mod (p - 1) since

u/imod (p-1) = u * i"tmod (p-1).

>> d=8; >>d=3;
>>d_ml1=mulinv(d,p-1) >>d_ml=mulinv(d,p-1)
d_m1 = Inverse element does not exist dml=7

>>gcd(d,p-1) >>mod(d*d_m1,p-1)
ans =2 ans=1

>> d=9; >>d*d_m1l

>> gcd(d,p-1) ans =21

ans=1 >> mog(ans,p-1)
>>d_ml=mulinv(d,p-1) error: 'mog' undefined near line 1, column
d mi=9 1

>>mod(d*d_m1,p-1) >>mod(ans,p-1)
ans=1 ans=1

>>1/9

ans =0.1111
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Discrete Exponent Function (6/14)

Example 1: Let for given integers u, X and h in Z,.1 we compute exponent s of generator g by the expression

s=u+ xh.
Then

gsmod p = gsmed (-H) mod p.
Therefore, s can be computed mod (p-1) in advance, to save a multiplication operations, i.e.
s =u+ xh mod (p-1).
Example 2: Exponent s computation including subtraction by xr mod (p-1) and division by i in Zp.1 when
ged@h, p-1) = 1. s = (h - xn)i* mod (p-1).

Firstly d = xr mod (p-1) is computed:

Secondly -d = -xr mod (p-1) = (p-1-d) is found.

Thirdly it mod (p-1) is found.

And finally exponent s = (h + (p-1-d))i-*mod (p-1) is computed.

>> d=mod(x*r,p-1);
>>md=mod(-d,p-1);
>>i_ml=mulinv(i,p-1);

Discrete Exponent Function (7/14)

Referencing to Fermat little theorem and its corollaries, formulated above, the following theorem can be
proved.

Theorem. If g is a generator in Zy" then DEF provides the following 1-to-1 mapping

DEF Zp-1—> Zp*.
Parameters p and g for DEF definition we name as Public Parameters and denote by PP = (p, ).
Example: Strong prime p=11,p=2+*5+1,then g =5 and q is prime. Then p-1 = 10.

Z11"={1,2,3, ..., 10}
Z10=1{0,1,2, ..., 9}

Discrete Exponent Function (8/14)

The results of any binary operation (multiplication, addition, etc.) defined in any finite group is named
Cayley table including multiplication table, addition table etc.

Multiplication table of multiplicative group Z11" is represented below.

Multiplicatio |Z11"
n tab. mod 11
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Discrete Exponent Function (9/14)

The table of exponent values for p = 11 in Z11* computed mod 11 and is presented in table below.
Notice that according to Fermat little theorem for all ze Z11", zP1=719=2% = 1 mod 11.
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Exponent|Zs1*
tab. mod
11
A0 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 4 8 5 10 9 7 3 6 1 221 mod 11 & 25#1 mod 11
3 1 3 9 5 4 1 3 9 5 4 1
4 1 4 5 9 3 1 4 5 9 3 1
5 1 5 3 4 9 1 5 3 4 9 1
64 1 6 3 7 9 10 5 8 4 2 1 62#1 mod 11 & 65#1 mod 11
71 7 5 2 3 10 4 6 9 8 1 72#1 mod 11 & 75#1 mod 11
g 1 8 9 6 4 10 3 2 5 7 1 g%1modll&81mod1il
9 1 9 4 3 5 1 9 4 3 5 1
0 1 10 1 10 1 10 1 10 1 10 1

Discrete Exponent Function (10/14)

Notice that there are elements satisfying the following different relations, for example:

3°=1mod 11land 32# 1 mod 11.
The set of such elements forms a subgroup of prime order g = 5 if we add to these elements the neutral

group element 1.
This subgroup has a great importance in cryptography we denote by

Gs ={1, 3,4,5,9}.
The multiplication table of Gs elements extracted from multiplication table of Z11* is presented below.

Multiplication |G5 Exponent G5

tab. mod 11 . tab. mod 11
Values of inverse

elements in Gs

* 1 3 4 5 9 n 0 1 2 3 4 5
1 1 3 4 5 9 1'=1mod 11 1 1 1 1 1 1 1
3 3 9 1 4 5 31=4mod 11 3 1 3 9 S 4 1
4 4 1 5 9 3 4-1=3 mod 11 4 1 4 5 9 3 1
5 5 4 9 3 1 51=9 mod 11 5 1 5 3 4 9 1
9 9 5 3 1 4 9-1=5mod 11 9 1 9 4 3 5 1

Discrete Exponent Function (11/14)

Notice that since Gs is a subgroup of Z11* the multiplication operations in it are performed mod 11.
The exponent table shows that all elements {3, 4, 5, 9} are the generators in Gs.
Notice also that for all ye{3, 4, 5, 9} their exponents 0 and 5 yields the same result, i.e.

vy =v5=1mod 11.
This means that exponents of generators y are computed mod 5.

This property makes the usage of modular groups of prime order g valuable in cryptography since they
provide a higher-level security based on the stronger assumptions we will mention later.

Therefore, in many cases instead the group Z,* defined by the prime (not necessarily strong prime) number
p the subgroup of prime order Gq in Z," is used.

In this case if p is strong prime, then generator y in Gq can be found by random search satisfying the
following conditions

y9=1mod p and y2# 1 mod p.

Analogously in this generalized case this means that exponents of generators y are computed mod g. In our
modeling we will use group Z," instead of G4 for simplicity.

Discrete Exponent Function (12/14)
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Let as above p=11 and is strong prime and generator we choose g =7 from the setI'={2, 6, 7, 8}.
Public Parameters are PP=(11,7), Then DEFy(x) = DEF(x) is defined in the following way:

DEF-(x) = 7*mod 11 = a;
DEF-(x) provides the following 1-to-1 mapping, displayed in the table below.

X 0 1 2 3 4 5 6 7 8 9 10 |11 12 13 |14
7modp=al 7 5 2 3 10 |4 6 9 8 1 7 5 2 3

You can see that a values are repeating when x = 10, 11, 12, 13, 14, etc. since exponents are reduced mod
10 due to Fermat little theorem.

The illustration why 7* mod p values are repeating when x =10, 11, 12, 13, 14, etc. is presented in
computations below:

10mod 10=0; 710=70= 1mod11=1.

11mod10=1; 711=71= 7mod11=7.

12mod 10=2; 712=72= 49 mod 11 =5.

13mod 10=3; 713=73= 343 mod 11=2.

14 mod 10 =4; 714=74=2401 mod 11 = 3.

etc.

Discrete Exponent Function (13/14)

For illustration of 1-to-1 mapping of DEF(x) we perform the following step-by-step computations.

xeZy, ael”
7°= 1 mod 11 ) ——— 1
7'=7 mod 11 1 2
7°=5mod 11 2 3
7'=2 mod 11 3 4
7'=3 mod 11 4 5
7°=10 mod 11 5 6
7°=4 mod 11 6 7
7" = 6 mod 11 7 8
7°=9 mod 11 8 9
7' =8 mod 11 9 10

It is seen that one value of x is mapped to one value of a.

Discrete Exponent Function (14/14)

But the most in interesting think is that DEF is behaving like a pseudorandom function.
It is a main reason why this function is used in cryptography - classical cryptography.

To better understand the pseudorandom behaviour of DEF we compare the graph of "regular" sine
function with "pseudorandom™ DEF using Octave software.

. >> pl28def
>>p128sin P
o p=127;
xrange = 16 * pi;
g=23;
step = xrange/128; = 0pels
x = 0:step:xrange; Pt
. a =mod_expv(g, X, p);
y =sin(x);
comet(x, a)

comet(x, y)
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Example 1: Let for given integers u, x and h in Z,.1 we compute exponent s of generator g by the expression

s=u+ xh.
Then

gsmod p = gsmed (- mod p.

Therefore, s can be computed mod (p-1) in advance, to save a multiplication operations, i.e.
s = u + xh mod (p-1).

>> p=genstrongprime(28) >> u=int64(randi(p-1)) >> snr=int64(u+x*h)

p =242502683 u=74661797 snr=32175149681928845
>>q=(p-1)/2 >> h=int64(randi(p-1)) >> mod(snr,p-1)
q=121251341 h =194373549 ans = 50343561

>> g=2 >> xh=mod(x*h,p-1)

g=2 xh = 218184446

>>mod_exp(g,q,p) >> upxh=mod(u+xh,p-1)

ans = 242502682 upxh = 50343561

>> x=randi(p-1) >> s=upxh

x = 4.8906e+07 s =50343561

>> x=int64(randi(p-1))
x = 165532552

Examgle 2: Exponent s computation including subtraction by xr mod (p-1) and division by i in Z,.1 when
ged(i, p-1) = 1. s = (h - xr)i* mod (p-1).

Firstly d = xr mod (p-1) is computed:

Secondly -d = -xr mod (p-1) = (p-1-d) is found.

Thirdly it mod (p-1) is found.

And finally exponent s = (h + (p-1-d))i-* mod (p-1) is computed.

>> r=int64(randi(p-1)) >>i_ml=mulinv(i,p-1)
r=212560238 i_ml1l=196196855

>> i=int64(randi(p-1)) >> ged(i,i_m1)

i = 64538497 ans=1

>> xr=mod(x*r,p-1) >> mod(i*i_m1,p-1)

xr =98263592 ans=1

>> mxr=mod(-xr,p-1) >> s=mod(hpmxr*i_m1,p-1)
mxr = 144239090 s =131208547

>> xrpmr=mod(xr+mxr,p-1)

xrpmr =0

>> hpmxr=mod(h+mxr,p-1)
hpmxr = 96109957

: 5
$= (h-xn)it mod (p-1). a"mod p = ..,
Firstly d = xr mod (p-1) is computed:
Secondly -d = -xr mod (p-1) = (p-1-d) is found.
Thirdly i-*mod (p-1) is found.
And finally exponent s = (h + (p-1-d))i-* mod (p-1) is computed.
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